Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra. | \(h_{3}\) | \(g_{4}\) | \(g_{8}\) | \(g_{1}\) |
weight | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{2}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(\omega_{1}-2\psi\) | \(\omega_{1}+2\psi\) | \(2\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{\omega_{1}-2\psi} \) → (1, 0, -2) | \(\displaystyle V_{\omega_{1}+2\psi} \) → (1, 0, 2) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | |||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | |||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(0\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(0\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | |||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{1}-2\psi\) \(-\omega_{1}+2\omega_{2}-2\psi\) \(-2\psi\) \(\omega_{1}-2\omega_{2}-2\psi\) \(-\omega_{1}-2\psi\) | \(\omega_{1}+2\psi\) \(-\omega_{1}+2\omega_{2}+2\psi\) \(2\psi\) \(\omega_{1}-2\omega_{2}+2\psi\) \(-\omega_{1}+2\psi\) | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | |||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{-\omega_{1}+2\omega_{2}-2\psi}\oplus M_{\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-\omega_{1}-2\psi}\oplus M_{\omega_{1}-2\omega_{2}-2\psi}\) | \(\displaystyle M_{-\omega_{1}+2\omega_{2}+2\psi}\oplus M_{\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-\omega_{1}+2\psi}\oplus M_{\omega_{1}-2\omega_{2}+2\psi}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{2}}\) | |||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{-\omega_{1}+2\omega_{2}-2\psi}\oplus M_{\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-\omega_{1}-2\psi}\oplus M_{\omega_{1}-2\omega_{2}-2\psi}\) | \(\displaystyle M_{-\omega_{1}+2\omega_{2}+2\psi}\oplus M_{\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-\omega_{1}+2\psi}\oplus M_{\omega_{1}-2\omega_{2}+2\psi}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{2}}\) |